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Abstract. For low energy spacecraft trajectories such as multimoon orbiters for the Jupiter system, multiple
gravity assists by moons could be used in conjunction with ballistic capture to drastically decrease
fuel usage. In this paper, we investigate a special class of multiple gravity assists which can occur
outside of the perturbing body’s sphere of influence (the Hill sphere) and which is dynamically
connected to orbits that get captured by the perturber and orbits which escape to infinity. We
proceed by deriving a family of symplectic twist maps to approximate a particle’s motion in the
planar circular restricted three-body problem. The maps capture well the dynamics of the full
equations of motion; the phase space contains a connected chaotic zone where intersections between
unstable resonant orbit manifolds provide the template for lanes of fast migration between orbits of
different semimajor axes. Within the chaotic zone, the concept of a set of reachable orbits is useful.
This set can be considered bounded by, on one end, orbits leading to ballistic capture around the
perturber, and on the other end, the orbits escaping to infinity or a bounding surface at finite
distance.
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1. Introduction. In recent numerical constructions of multimoon orbiters for the Jupiter
system, multiple gravity assists for a spacecraft in the exterior and interior Hill’s regions were
used to construct low energy transfers between moons [25, 35]. These gravity assists do not
lend themselves to the patched-conic approach of astrodynamics as they occur even when the
spacecraft remains outside of the perturbing moon’s sphere of influence or Hill sphere.

In this paper, we investigate such gravity assists by the explicit construction of an energy
kick function approximating the effect of the perturbing moon on a spacecraft’s jovicentric
orbit. We use Picard’s method of successive approximations to generate a symplectic twist
map for the planar restricted three-body problem which approximates a Poincaré map at the
surface of section corresponding to the periapsis condition. Other authors [23, 6, 16, 36] have
considered similar maps to study the long-time evolution of nearly parabolic comets.

The family of maps we develop are applicable to objects on near-Keplerian elliptical orbits
of low, moderate, and high eccentricity. We are especially interested in the dynamics of objects
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whose periapse or apoapse (closest and furthest approach to the central body, respectively)
grazes the Hill sphere of the perturbing body. The engineering application envisioned is the
design of low energy trajectories [7, 2], specifically between moons in the satellite system of
one of the giant planets [15, 12]. Multiple gravity assists in resonance with the perturber
are a key physical mechanism which could be exploited in future scientific missions [25, 26].
For example, a trajectory sent from Earth to the Jovian system, just grazing the orbit of
the outermost icy moon Callisto, can migrate using little or no fuel from orbits with large
apoapses to smaller ones.

The advantage of considering an analytical two-dimensional map as opposed to full numer-
ical integration of the restricted three-body equations of motion is that we can apply all the
theoretical and computational machinery applicable to phase space transport in symplectic
twist maps [24, 19, 9]. We also make connections with earlier work on the restricted three-
body problem, particularly capture via tube dynamics [14]. The result is a fuller picture of
the global dynamics in the restricted three-body problem.

The paper is organized as follows. In section 2, we write the Hamiltonian for the restricted
three-body problem in a form appropriate for application of Picard’s method and introduce
the energy regime we are considering. In section 3, we apply Picard’s method of successive
approximations to determine the orbital changes over one orbit. In section 4, we develop a
family of area-preserving twist map approximations to the Poincaré return map which take
one periapsis passage to another for orbits exterior to the secondary mass. The dynamics of
the maps are discussed in sections 5 and 6, in particular, the relationship of multiple gravity
assist trajectories to capture around the secondary mass and escape to infinity. We discuss
our results and indicate future directions in section 7.

2. The Hamiltonian. Consider the planar circular restricted three-body problem
(PCR3BP) with a test particle P in the gravitational field of two primary masses, m1 and m2,
which are on circular orbits about their common center of mass. For illustrative purposes, we
take m1 to be Jupiter, m2 to be one of its moons, and the particle to be a natural object or
spacecraft of insignificant mass.

We use the standard system of units; the m1-m2 distance is scaled to 1, as is their mean
motion about the center of mass, and their mass ratio is μ = m2/(m1 + m2) � 1. The
PCR3BP is a perturbation of the two-body Kepler problem, where the particle is assumed to
be on a near-Keplerian orbit around the m1-m2 barycenter. We can write the Hamiltonian in
a frame centered on the barycenter,

(2.1) Hiner =
1

2
(p2

x + p2
y) −

1 − μ

r1
− μ

r2
.

We can write r1 and r2 in terms of (r, θ), where r � μ is the distance between the particle
and the barycenter, and θ, as shown in Figure 1, is the angle between the particle and m2,
measured from the barycenter. Using r =

√
r2
1 − 2μr1 cos θ + μ2 = r1 − μ cos θ + O(μ2) we

can write

(2.2)
1

r1
=

1

r
− μ

r2
cos θ + O(μ2).
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Figure 1. The relationship between distances in the restricted three-body problem.

Our Hamiltonian (2.1) can be rewritten as

Hiner =

(
1

2
(p2

x + p2
y) −

1

r

)
+ μ

(
− 1

r2
+

cos θ

r2
+

1

r

)
+ O(μ2)

= K + μR + O(μ2),(2.3)

where K = −1/(2a) is the Keplerian part and μR the perturbing part to first order in μ. The
particle’s phase space position is given by its instantaneous semimajor axis a, eccentricity
e, argument of periapsis ω, and true anomaly ν, which have geometric descriptions as given
in Figure 2. These orbital elements are referred to as “osculating” or instantaneous orbital
elements since they represent an instantaneous approximation of the motion of the object as
a Keplerian orbit, which is the kind of orbit it would have if other perturbations were not
present. In a celestial mechanics perturbation problem like the one we are considering, these
elements are very useful.

For the perturbing function, we have

R = − 1

r2
+

cos θ

r2
+

1

r

= − 1√
1 + r2 − 2 r cos θ

+
cos θ

r2
+

1

r
.(2.4)

The angle θ can be related to the traditional osculating elliptic elements of the particle as
θ = ω + ν − t, where ν = ν(t) is the true anomaly of the particle and a function of time, ω is
the particle’s angle of periapsis, r = p/(1 + e cos ν), and p = a(1 − e2).

In the frame corotating with m2 and m1 about their barycenter, the time-dependent
Hamiltonian (2.3) can be rewritten in a time-independent form,

(2.5) Hrot(a, e, ω̄, ν) = K(a) + μR(a, e, ω̄, ν) −G(a, e),

where G =
√

a(1 − e2) =
√
p is the angular momentum of the particle’s orbit and we drop

the O(μ2) terms. In the rotating frame, the coordinate conjugate to G is ω̄ = ω− t, the angle
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Figure 2. The osculating or instantaneous orbital elements for a particle P in a near-Keplerian orbit about
a massive central body m1. The perturbing body, m2, is in a circular orbit about m1 of unit frequency, and
the x axis of the rotating frame is defined as the line from m1 to m2, where the y axis of the rotating frame
completes a right-handed coordinate system.

of periapsis measured from the m1-m2 line. Hamiltonian (2.5) is time-independent [31] and
therefore constant along particle trajectories. We refer to this constant as the Jacobi constant,
CJ = −2Hrot. Although the invariance of the Hamiltonian in the rotating frame is useful, we
continue to use ω (in the inertial frame) for the computations described in the next section.

The Jacobi constant allows us to obtain a coarse partition of accessible phase space for
the particle. For some values of CJ , there are inaccessible regions in the rotating frame. The
inaccessible regions whose boundaries are zero velocity curves divide the accessible regions,
known historically as Hill’s regions, naturally into three regions. For a given μ there are five
basic cases of connectivity between the regions, corresponding to five intervals of CJ (see [14]
for details). The cases are shown in Figure 3. The divisions between the cases are given by
the Jacobi constant at the Lagrange points, i.e., Ci = CJ(Li).

We are focusing on particle motion which remains in the exterior region. According to
the cases, this would mean CJ > C2. In the Jupiter–Callisto system (μ = 5.667 × 10−5), for
example, we have C2 = 3.00618. Even though motion from the exterior to the regions around
m2 and m1 is possible for cases 3, 4, and 5 we find that for energies close to but below C2,
particle motion can remain in the exterior region for long times. Transit from the exterior
region to the region around m2 is possible for CJ < C2, and the connection between multiple
gravity assists and capture orbits will be discussed in section 6.

3. Changes in orbital elements over one orbit. To evaluate changes in the osculating
orbital elements over one orbit, we use the first iteration of Picard’s method of successive
approximations, following [27] and [33].
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Figure 3. Regions of possible motion. Zero velocity curves for five values of the Jacobi constant CJ , one
in each of the cases, are shown on the x-y plane for μ = 0.3. These curves bound the zone, in white, accessible
by the particle P for a given CJ . The part of the x-y plane which is shaded is inaccessible for a given energy
and is known as the forbidden region. The outermost accessible region, known as the exterior region, extends
to infinity. In the fifth case, the forbidden region vanishes and motion over the entire x-y plane is possible. In
the last panel, the (μ,CJ)-plane is partitioned into the five cases of Hill’s regions.

Picard iteration. First, we introduce Picard’s method. Let t ∈ R be the time and x(t)
and f(x, t) be functions with values in Rn. Consider the problem of finding solutions for the
dynamical system

dx

dt
= f(x, t),

x(t0) = x0,(3.1)

where t0 ∈ R and x0 ∈ Rn are the initial time and configuration of the system.

The Picard iterate of a function y(t) with initial condition x0 is defined as

(3.2) Px0y(t) = x0 +

∫ t

t0

f(y(τ), τ) dτ.
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Let P 2
x0
y(t) = Px0(Px0y(t)), P

3
x0
y(t) = Px0(P

2
x0
y(t)), and so on. If f and ∂f

∂t are continuous,
then it can be shown that given any continuous initial curve y(t), its mth Picard iterate
Pm
x0
y(t) converges to the solution of (3.1) as m → ∞ if t is in a suitable interval of values close

to t0 (see, for example, [4]).

Approximating changes in orbital elements. We use Picard’s method as follows. Suppose
y(t) represents the osculating orbital elements of a particle in an orbit about the large primary
body m1. The function f includes the perturbation of the secondary body m2 of mass μ. The
unperturbed orbital elements are a constant function y(t) = x0 over the time interval [t0, t1],
t1 > t0. The first iteration of Picard’s method yields

(3.3) Px0y(t) = x0 +

∫ t

t0

f(x0, τ) dτ,

where the time variation in the integrand is due to the perturbation of the m2 and the true
anomaly ν of the particle orbit. Noting that Px0y(t0) = x0, and making the approximation
y(t1) ≈ Px0y(t1), we derive the first order change in the orbital elements over one orbit as

(3.4) Δy =

∫ t1

t0

f(x0, τ) dτ,

where T = t1 − t0 is one period of the unperturbed particle orbit.

Perturbations to particles exterior to the orbit of the secondary mass. Consider a particle in
the exterior realm, with Jacobi constant close to but above that of L2; see case 2 in Figure 3.
In this situation, the particle travels on a near-Keplerian orbit around the central mass m1.
The greatest perturbation occurs at periapsis, when the particle’s orbit comes closest to the
orbit of the perturbing mass. We therefore take the limits of integration to be from apoapsis
to apoapsis, with t0 = t∗ − T/2, t1 = t∗ + T/2, where T = 2πa3/2 is the unperturbed orbital
period of the particle and t∗ is the time of periapsis passage. We take t∗ = 0 in general.
Periapsis passage occurs at ν = t = 0, and thus at the moment over which the perturbation
is evaluated, the angles ω, ω̄, and θ coincide.

For our computations, it is useful to use the canonical form of the Lagrange planetary
equations [5] which express the change in G as

(3.5)
dG

dt
= −μ

∂R

∂ω
,

where, from (2.4), we calculate

(3.6)
∂R

∂ω
=

r

r3
2

sin(ω + ν − t) − 1

r2
sin(ω + ν − t).

The change in G over one orbit can be computed to first order in μ using (3.5) as the
dynamical system for which we apply the approximation (3.4):
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ΔG = −μ

∫ T/2

−T/2

∂R

∂ω
dt

= −μ

∫ T/2

−T/2

[
r

r3
2

sin(ω + ν(t) − t) − 1

r2
sin(ω + ν(t) − t)

]
dt

= − μ
√
p

∫ π

−π

[(
r

r2

)3

sin(ω + ν − t(ν)) − sin(ω + ν − t(ν))

]
dν

= − μ
√
p

[(∫ π

−π

(
r

r2

)3

sin(ω + ν − t(ν)) dν

)
− sinω

(
2

∫ π

0
cos(ν − t(ν)) dν

)]
.(3.7)

If the first integral is expanded as a Fourier series in ω, the integrals can be expressed as
functions of Hansen coefficients [28]. However, there is no significant advantage in this for the
current application, and so the integrals are evaluated by quadratures in their current form.

Our goal is to compute ΔK, the change in Keplerian energy over one orbit. By the
invariance of the Jacobi constant we have ΔHrot = 0 and, therefore, from (2.5),

(3.8) ΔK = ΔG− μΔR,

where

ΔR = R(ν = π) −R(ν = −π),

=
1√

1 + Q2 + 2Q cos(ω + τ)
− 1√

1 + Q2 + 2Q cos(ω − τ)
+

2

Q2
sinω sin τ,(3.9)

with Q = a(1 + e) and τ = πa3/2 the apoapsis distance and half period of the unperturbed
orbit, respectively.

ΔK is a function of ω, K, and e. The invariance of the Jacobi constant yields a relation-
ship among these three variables, implying ΔK = ΔKCJ

(ω,K), where CJ is a parameter.
The expression (3.8) can be written as ΔKCJ

= μf(ω,K), where f is the energy kick func-
tion following the terminology of [16, 36, 21]. Physically, the energy kick ΔKCJ

between
consecutive apoapsis passages can be approximated as a discrete event occurring at periapsis
passage. Since ω = ω̄ at the moment the kick takes place, we will drop the bar from now on
but will consider ω to be the angle of periapsis as measured in the rotating frame, that is,
with respect to the m1-m2 line; in other words, ω is the azimuthal separation of the particle
and the perturbing body m2 at the moment of periapsis passage and therefore at the moment
of the kick.

For our application, Q � q > 1, and it is straightforward to show that ΔR is bounded:

(3.10) |ΔR| ≤
4(Q2 − 1

2)

Q2(Q2 − 1)
≈ 4

Q2
.

For values of K and CJ used in this study, the maximum contribution of μΔR is much smaller
than that of ΔG, so we ignore it for the remainder of the paper; i.e.,

(3.11) f(ω,K) = ΔKCJ
(ω,K)/μ = ΔG/μ
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is assumed.

In Figure 4(a), we plot f versus ω for CJ = 3 and an example value of semimajor axis a.
Notice that the location and angular width of the greatest perturbations are anti-symmetric
about the m1-m2 line (ω = 0) and are independent of the size of the perturbation μ. As
shown in Figure 4(c), particle orbits whose periapsis passages occur slightly ahead of m2 in
its orbit (ω > 0) will decrease their energy, while those with periapsis passages just behind
m2 (ω < 0) will increase their energy. The location and magnitude of the maximum kicks are
plotted as a function of a in Figure 4(b).

We want to look at the cumulative effect of multiple passes near m2. Such a trajectory has
an invariant Jacobi constant, although its orbital elements a and e may change dramatically
over time. In the next section, we consider ΔKCJ

where CJ = constant. As the orbital energy
K and thus the semimajor axis a changes according to ΔKCJ

for each kick, e changes to leave
invariant (2.5), rewritten as

(3.12) CJ =
1

a
+ 2

√
a(1 − e2) + 2μ

(
1

r2
− 1

r1

)
.

For our application, the terms of O(μ) are small and we are left with the Tisserand parameter
from which we obtain the eccentricity.

4. The Keplerian map derived. Consider the PCR3BP energy surface given by the pair
(μ,CJ), where μ � 1 and CJ ≈ 3 is close to the Jacobi constant of L2. We want to compute
the sequence of pairs (ωn,Kn), n = 1, 2, 3, . . . , which result from an initial condition (ω0,K0).
These pairs are the azimuthal separation of the particle and the perturbing mass and the
particle’s Keplerian energy at the nth periapsis passage.

In our approximation, (ωn,Kn) represents the particle’s orbit just before receiving an
energy kick. Consider, for example, one of the trajectories in Figure 4(c) before the kick was
received. Immediately following the kick, the orbit becomes (ωn+1,Kn+1). The time until the

next periapsis passage is now Δt = 2πa
3/2
n+1 = 2π(−2Kn+1)

−3/2. The change in the periapsis
angle during this period is Δω = −Δt modulo 2π. Note, we are neglecting the direct effect
of the gravity interaction on the argument of periapsis, considering only its indirect effect
through the change in Keplerian energy. We therefore obtain a two-dimensional update map
(ωn+1,Kn+1) = F (ωn,Kn) of the cylinder A = S1 × R onto itself; i.e., F : A → A, where

(4.1) F

(
ωn

Kn

)
=

(
ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2 (mod 2π)
Kn + μf(ωn,Kn)

)
.

The Jacobian determinant of F is 1 + μ ∂f
∂K . If we assume f is independent of K, then we

have a symplectic (area-preserving) twist map, desirable for many known properties of such
maps [19, 8]. For the remainder of this paper, we neglect the K dependence of f . Given a
reference K̄, we let f(ω) = f(ω, K̄) and thereby make F area-preserving:

(4.2) F

(
ωn

Kn

)
=

(
ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2 (mod 2π)
Kn + μf(ωn)

)
.
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(a) (b)

(c)

Figure 4. (a) The energy kick function f versus ω for CJ = 3, for a = 15. The plot is odd in ω,
f(−ω) = −f(ω). (b) The location and magnitude of the maximum kicks as a function of a. For fmax,
the vertical axis is logarithmic. The largest positive kick is at −ωmax, i.e., fmax = f(−ωmax). The largest
negative kick is at −ωmax with value −fmax. Notice that smaller a orbits yield larger maximum kicks. (c) Two
trajectories with semimajor axis a0 begin at the same position with slightly different velocities, shown here
schematically in the rotating frame for energy case 3. The solid trajectory has its periapsis passage at ωmax,
receives the largest negative energy kick, and drops in semimajor axis, shown in the time history on the right
panel. The dashed trajectory has its periapsis passage at −ωmax and gets kicked to a larger semimajor axis.
As shown schematically in the time history, the energy kick is nearly instantaneous.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIPLE GRAVITY ASSISTS IN THE THREE-BODY PROBLEM 585

Figure 5. Plot of a versus ω for μ = 5.667 × 10−5, CJ = 3, ā = −1/(2K̄) = 1.35. The left-hand plot
shows trajectories computed using the Keplerian map. The right-hand plot shows trajectories computed via full
integration of the circular restricted three-body problem, using a Poincaré surface of section at periapsis. The
initial conditions for both were taken initially in the chaotic sea and followed for 104 iterates, thus producing
the “Swiss cheese” appearance, where holes corresponding to stable resonant islands reside.

This map has a twist to the right:

(4.3)
∂ωn+1

∂Kn

∣∣∣∣
ωn

= 3π (−2(Kn + μf(ωn)))−5/2 > 0

for Kn < −μf(ωn). From here on, we will understand F to be defined over the appropriate
section of the cylinder A for which (4.3) holds.

The map (4.2) has been called the Keplerian map by earlier authors who derived it by
other means for the case of near-parabolic orbits [23, 16]. Pan and Sari [21] considered the
large a limit, referring to their map as the eccentric mapping. Our form is appropriate for
elliptical orbits (e < 1), even those of low to moderate eccentricity. For a given Jacobi constant
and reference energy K̄ (where, say, K̄ = K0), F is a mapping approximating the dynamics
of the PCR3BP for orbits with nearby Keplerian energies, i.e., Kn close to K̄. Specifically, F
approximates the Poincaré return map of the fully integrated equations of motion where the
surface of section is taken at periapsis, a map used recently in the study of the Hill problem
[34, 22].

5. Dynamics of the Keplerian map. Other authors have considered similar maps to
study the long-time evolution of nearly parabolic comets [6, 16, 36]. We apply our map to
the identification of transfer trajectories applicable to spacecraft in a planet-moon system.
For example, we can consider a spacecraft in the Jupiter–Callisto system (μ = 5.667 × 10−5)
with CJ = 3. Using semimajor axis as our vertical coordinate and applying the map (4.2) for
several initial values in the (ω, a)-plane result in the left-hand plot of Figure 5. Throughout
the paper we will reference a and K interchangeably; the context should make it clear which
coordinate we are using.
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For our map computations, we need only calculate f(ω) once from (3.11) for a grid of
points ω ∈ [−π, π]. Saving the results in a look-up table, we use interpolation to obtain f for
arbitrary ω. The initial values for the left-hand side of Figure 5 were chosen in a connected
chaotic sea (an irregular component in the sense of Birkhoff), avoiding the stable islands
corresponding to stable mean motion resonances of the particle’s orbit with Callisto’s. As our
phase space is the cylinder, the left and right sides of the plot (ω = ±π) are to be identified.
The right-hand plot shows trajectories computed via full integration of the PCR3BP, using a
Poincaré surface of section at periapsis.

The accuracy of the Keplerian map is demonstrated by the resemblance between the results
of the map and fully integrated trajectories of the PCR3BP. The location and widths of the
resonant islands appear to be in agreement. As discussed below, the geometrical features
directing the motion of phase space regions are approximated well. The notable difference
is the “warping” of trajectories of the map near ω = 0, not seen in the full system. The
full system Hamiltonian has a discrete time-reversal symmetry such that if (ω0, a0) maps to
(ω1, a1) then (−ω1, a1) maps to (−ω0, a0). In our approximate map this symmetry is broken,
albeit slightly.

Some remarks on the resonant structure of the map are in order. Transport in the map
can be understood in terms of lobe dynamics and resonance zones [10, 25]. Lobes are parcels
of phase space bounded by pieces of stable and unstable manifolds of hyperbolic points. The
hyperbolic points of (4.2) occur at s : r mean motion resonances, ares = (r/s)2/3, where in
inertial space the moon orbits Jupiter in r complete circuits for every s particle orbits. In
Figure 5, these appear as periodic points of period r−s > 0. These resonances are also known
as being of order r−s. For every ares, there is a band of at least 2(r−s) alternating elliptic and
hyperbolic points, with stable islands (the holes in Figure 5) surrounding the elliptic points.

Let us consider the lowest order resonance in Figure 5, the first order 1:2 resonance.
The period-one hyperbolic point (fixed point) corresponding to this resonance is located at
pres = (ωres, ares), where ωres = 0 and ares = (2)2/3 ≈ 1.587. The stable and unstable
manifolds for the hyperbolic point are shown in Figure 6. The shaded region is the resonance
zone for this resonance, bounded by pieces of upper and lower branches of the stable and
unstable manifolds, from the point pres to a primary intersection point of the manifolds. The
primary intersection points are also homoclinic orbits doubly asymptotic to pres.

The unstable manifold is produced by first finding the unstable direction in the neigh-
borhood of pres and mapping forward a small seed of points along this direction using F .
Linearizing F in the neighborhood of pres, we obtain

(5.1)

(
δωn+1

δKn+1

)
=

(
1 + μβγ −γ
−μβ 1

)(
δωn

δKn

)
,

where β = − ∂f
∂ω |ω=ωres and γ = 6π(ares)

5/2. The unstable manifold is locally tangent to the
eigenvector belonging to the maximum eigenvalue,

(5.2) λ =
1

2

(
2 + μβγ +

√
μβγ(μβγ + 4)

)
.

The stable manifold is produced similarly, substituting F−1 for F in the above procedure.
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Figure 6. Against the background of Figure 5, the stable and unstable manifolds of the central black point
are plotted, the period-one hyperbolic fixed point pres = (ωres, ares) = (0, (2)2/3) corresponding to the 1:2 mean
motion resonance. The closed curves in the gray region are restricted to the stable island and disconnected from
the connected chaotic sea.

A similar picture of intersecting manifolds exists around each horizontal resonance zone
encompassing the stable resonance holes and is similar to the resonance manifolds computed in
the full equations [17]. The manifolds of different resonances intersect one another, providing
the template for the migration of orbits through semimajor axis.

Finding the orbits which yield maximum change in semimajor axis. We consider the following
problem: for a given a0 = −1/(2K0), find the ω0 which yields the maximum change |an − a0|
after n periapses. Given our map F , a diffeomorphism of the cylinder to itself, we can consider
iterates of the circle at a0,

(5.3) Γ0 = {(ω0, a0) ∈ A | ω0 ∈ S1}.

In Figure 7(a), we plot Γ0 and its images Γn = Fn(Γ0), n ≥ 1, in terms of the change in
semimajor axis Δa = an − a0 versus ω0. The calculations are for a particle with a0 = 1.54,
CJ = 3 in the Jupiter–Callisto system, using ā = 1.35 for the map (4.2). The figure shows the
effect of multiple periapses, using successive magnifications to reveal the complex self-similar
structure as we follow the region with the greatest decrease in semimajor axis.

The function Δan(ω0) gets very complex even for small n. For increasing n, maxω0 Δan
and minω0 Δan have increased magnitude, and the domains of the largest changes get thinner.
We can estimate the size of these domains as follows. Suppose the local maxima and minima
spike features at iterate n have a minimum width α(n) in ω. We can estimate α(1) from
the kick function f and then assume that α(n) = [α(1)]n. From Figure 4, it is reasonable to
approximate α(1) as 2ωmax. For ā = 1.35, we have ωmax = 0.01π; thus α(n) = (0.0628)n.
From simulation, we find that this is a very conservative lower bound. Nevertheless, for
computations to resolve the thin features at iterate n, we use adaptive refinement of a mesh
of sample points, described elsewhere [9].

Figure 7(b) shows an example of a trajectory which quickly decreases semimajor axis over
a duration of 25 orbits. This trajectory corresponds to an initial condition chosen such that it
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(a) (b)

Figure 7. (a) The total change in semimajor axis Δa after n periapsis passages is shown versus the initial
angle, ω, where (μ,CJ , ā) = (5.667× 10−5, 3, 1.35). In the top panel, the initial circle Γ0 and its second image
Γ2 = F 2(Γ0) are shown. The second panel from the top shows a magnification and the tenth image, and so on.
The bottom panel shows a portion of ω with Γ25. We see small regions of significantly decreased semimajor
axis after 25 periapsis passages. (b) Upper panel: The phase space trajectory of the trajectory marked as b
in (a). The initial point is marked with a triangle and the final point with a square. Lower panel: The
configuration space projections in an inertial frame for this trajectory. Jupiter and Callisto are shown at their
initial positions, and Callisto’s orbit is dashed. The particle migration is from larger to smaller semimajor axes,
keeping the periapsis direction roughly constant in inertial space. Both the particle and Callisto orbit Jupiter
in a counterclockwise sense.

repeatedly experiences a periapsis kick near a minimum of the kick function; see Figure 4(a).
For a randomly chosen initial condition, the effect of such kicks tends to average to zero. But
trajectories like the one shown in Figure 7(b) can be found which exhibit large increases or
decreases over small times—potentially useful trajectories for space missions.

Multiple gravity assists outside sphere of influence. We note that over the course of these
multiple gravity assists, the particle does not come within the sphere of influence of the
perturber. For the example in Figure 7(b), the particle at closest approach to the perturber is
at a nondimensional distance of r2,min = 0.0341, whereas the sphere of influence, approximated
as the Hill’s radius, is rh = (μ/3)1/3 = 0.0266. The phenomenon involved here is not the
typical picture of a gravity assist from the patched-conic perspective, wherein a particle’s
path enters the sphere of influence of a perturber and can be approximated as a hyperbolic
Keplerian trajectory with respect to the perturber [1].
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(a) (b)

Figure 8. (a) The maximum and minimum semimajor axes reached as function of the number of orbits for
a trajectory starting at a0 = 1.54. For CJ = 3.00, the reachable orbits are those in the darker shaded zone, and
those for CJ = 2.99 are in the lighter shaded zone. The parameters for the map are the same as in the preceding
figures, μ = 5.667 × 10−5 and ā = 1.35. (b) The variation in the location and magnitude of the maximum
kick with Jacobi constant CJ for three values of ā as labeled (same line labeling for both panels). Values are
independent of μ.

6. Reachable orbits, capture, and escape. Related to the previous discussion is the
question of what is the reachable set of orbits as a function of n for orbits initially on the
circle Γ0? In Figure 8(a), the maximum and minimum semimajor axes reached as a function
of the number of orbits are plotted for two values of the Jacobi constant. As particles migrate
from an initial semimajor axis through resonance zones via lobe dynamics, the set of reachable
orbits grows. The maximum (minimum) semimajor axis as a function of n is monotonically
increasing (decreasing). Although our map (4.2) lacks the time-reversal symmetry, we can
consider it to be close to the time-reversal symmetry of the full PCR3BP equations. In the
full equations, the reachable orbit set could be extended to n < 0 and would be the mirror
image of the n > 0 set. This implies that if an orbit of semimajor axis an can be reached in
n orbits from a0, an orbit of semimajor axis a−n = an can reach a0 in n orbits.

For CJ = 2.99, the growth is more rapid than for CJ = 3. For lower values of Jacobi
constant (higher three-body energies, per (2.5)), we expect migration in the phase space to
be faster since the kick function yields larger maximum kicks; see Figure 8(b).

Variation of ωmax and fmax with ā is also shown in Figure 8(b). For each ā, there is a
critical value C∗

J corresponding to a periapsis distance of 1 and a singularity of the map. Below
C∗
J , the kick function changes its character as the particle can now cross into the interior of

the perturber’s orbit, a regime investigated in [16].

Exits leading to capture. We can consider what the limits to the growth are for the reachable
set, in terms of a lower and upper bound in a. We first consider the lower bounds, and we
consider the full equations of the PCR3BP. For our case of interest, case 3 with CJ < C2,
a particle beginning in the exterior realm must remain there for all time in the absence of
an outside perturbation (see Figure 3); it cannot collide with or enter the phase space realm
around m2. For CJ below this value, a bottleneck region opens up around the Lagrange
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point L2, permitting particles to enter into orbit around m2. In what follows, we summarize
the mechanism for this capture as discussed in detail in [14]. On each three-dimensional
energy surface with CJ < C2, within the L2 bottleneck region there is a planar clockwise
orbit surrounding the location of L2, shown as a dashed curve in Figure 9(a). This orbit has
two-dimensional stable and unstable manifolds, with cylindrical (S1 × R) geometry. As two-
dimensional objects in a three-dimensional energy surface, these cylinders partition the energy
surface, acting as separatrices for the flow through the bottleneck region [7, 18]. The interior
of these cylinders in the energy surface form three-dimensional tubes of trajectories, termed
Conley–McGehee tubes [17]. Only particles inside the tubes will move from the exterior realm
to the m2 realm and vice versa; those outside the tubes will not.

The capture branch of Conley–McGehee tubes associated to the L2 bottleneck is shown
in Figure 9(a) as projected onto the configuration space. A tube projection appears as a strip
of varying width. Trajectories within the tubes wind around them in phase space and their
projection appears similar to the example trajectory within the tube in Figure 9(a). There is
also an escape branch (not shown) which appears as the mirror image of the capture branch,
reflected across the horizontal axis.

In order to find capture trajectories, we consider the Poincaré surface of section taken at
periapsis. In terms of the Delaunay (action-angle) variables (L,G, l, ω), where L =

√
a and l

is the mean anomaly, the surface of section at periapsis in the exterior realm is defined as

(6.1) Σe = {(ω, a) ∈ A | l = 0, a > 1},

where the condition of periapsis l = 0 is equivalent to setting the true anomaly ν to zero.
The Hamiltonian flow induces a Poincaré return map on Σe, F : Σe → Σe defined for almost
all points on Σe. In Σe, the last cross-section of a tube before it enters the realm around
m2 appears as an exit, diffeomorphic to a disk, as shown schematically in Figure 9(b) and
numerically in Figure 9(c). When trajectories of F reach the exit, they are transported to
the realm around m2, where we can consider them emerging within the entrance on Σm2 , a
suitably defined Poincaré surface of section in the m2 realm.

The Keplerian map F defined in (4.2) is an approximation to F . When trajectories of
F reach the exit, the Keplerian map approximation breaks down and the full equations of
motion must be considered. The trajectory can no longer be approximated as near-Keplerian
around the central body; it will instead be in orbit about the perturber. We can consider the
location of an exit in (ω, a) space (in Σe) to give us an effective lower bound in the growth of
a reachable set when CJ < C2.

Escaping to infinity, upper bounds, and rotational invariant circles. For large values of μ,
there may not be an upper bound to the reachable set as n increases. Numerically, we have
found some particles which escape onto unbound parabolic and hyperbolic orbits (K ≥ 0) in
finite time (n < ∞) from orbits with relatively small a. The set of bound orbits in (ω,K)
space which will become unbound after their next periapsis passage is given by lobes bounded
above by K = 0 and below by K = −μf(ω) when f(ω) < 0, as illustrated in Figure 10(a).

If μ is smaller than a critical value, circulating trajectories lying on invariant circles may
exist, forming an upper boundary. McGehee [18] proved that for small μ in the PCR3BP,
the energy surface is broken up into regions bounded by invariant tori. These invariant tori
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(a)

(b) (c)

Figure 9. (a) A spacecraft P inside a tube of gravitational capture orbits will find itself going from an
orbit about Jupiter to an orbit about a moon, as shown schematically. The spacecraft is initially inside a tube
whose boundary is the stable invariant manifold of a periodic orbit about L2. The tube, made up of individual
trajectories, is shown as projected onto configuration space. (b) Poincaré sections in different realms—in this
case in the exterior and m2 realms, Σe and Σm2 , respectively—are linked by tubes in the phase space which
live in surfaces of constant energy (CJ = constant). Under the Poincaré map on Σe, a trajectory z0, z1, . . .
reaches an exit; the cross-section of the tube of capture orbits at the final periapsis before passage through the L2

bottleneck. Under the Hamiltonian flow, points in the exit of Σe map to the entrance of Σm2 . The trajectory
then evolves under the action of the Poincaré map on Σm2 . (c) The numerically computed location of the
exit on Σe. The axes are the argument of periapsis in the rotating frame ω and the semimajor axis a of the
instantaneous conic orbit about Jupiter, as in earlier figures. The location of the exit in configuration space is
labeled in the left panel of (a). This surface of section was generated using the full equations of motion with
μ = 5.667 × 10−5 and CJ = 3.005.
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(a) (b)

(c) (d)

Figure 10. (a) Bound trajectories enclosed by the lobes will become unbound after the next periapsis passage.
(b) The projection of invariant tori (darkly shaded) on position space for case 3. (c) A rotational invariant circle
(RIC) is an invariant loop that encircles the cylinder, i.e., a loop that cannot be contracted to a point. (d) A
stable circulating trajectory forms an upper boundary to the chaotic sea, preventing particles from migrating
to large a values. The calculation was done using the Keplerian map approximation with parameter values
(μ,CJ , ā) = (5 × 10−6, 3, 2.5).

project onto the darkly shaded annuli A1 and A2 shown for case 3 in Figure 10(b). These annuli
separate the Hill’s region into sections corresponding to the invariant regions in the energy
surface. For case 3, masses m1 and m2 are separated from each other by an invariant torus;
thus making it impossible for a particle to pass from arbitrarily close to m1 to arbitrarily
close to m2. Similarly, the two masses are separated from infinity by an invariant torus;
i.e., the exterior realm phase space is divided by a transport barrier whose projection onto
configuration space is A2. Let us call T2 that part of the exterior realm outside a neighborhood
of L2 which extends up to the bounding surface A2.
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We find such a boundary in the Keplerian map for small μ values, understood from
the point of view of absolute transport barriers in symplectic twist maps of the cylinder,
following [19]. An invariant circle is a curve C such that F (C) = C. A rotational invariant
circle (RIC) is a closed loop that encircles the cylinder (i.e., it cannot be contracted to a
point; see Figure 10(c)). Birkhoff’s theorem [3] implies that any RIC must be the graph of a
function a = A(ω). An RIC divides the cylinder into two invariant regions. In other words,
it prevents transport between the upper and lower “halves” of the cylinder. RICs are in fact
the only absolute barriers to transport for symplectic twist maps of the cylinder. Therefore,
in connected chaotic sets such as those shown in Figure 5 where amin < a < amax, we can say
that no RIC can exist entirely in that portion of the cylinder.

If we find an RIC for our map, we have found an upper bound in the phase space be-
yond which particles with a greater than but close to 1 cannot pass. As a computational
experiment motivated by calculations of [21], we consider the Keplerian map for (μ,CJ , ā) =
(5 × 10−6, 3, 2.8). We find an orbit at the top of Figure 10(d) which marches around the
cylinder, densely covering a circle. This is an RIC at the lower edge of the 1:4 resonance
island and is therefore a bounding surface. By the smoothness of the map F in its parameter
μ, we can expect a bounding surface for all μ below at least 5 × 10−6 for fixed CJ and ā.

This result is based on the structure of symplectic twist maps and not the KAM theo-
rem [19]. However, we note that in our context the KAM theorem implies that RIC’s present
in the unperturbed integrable area-preserving map, i.e, (4.2) with μ = 0,

(6.2)

(
ω′

K ′

)
=

(
ω − 2π(−2K)−3/2 (mod 2π)
K

)
,

will persist under small area-preserving perturbations of the unperturbed map. For the un-
perturbed map, all trajectories lie on RIC’s. The perturbed map for small μ is written

(6.3)

(
ω′

K ′

)
=

(
ω − 2π(−2K)−3/2 − μg(ω,K) (mod 2π)
K + μf(ω)

)
,

where g(ω,K) = 6πf(ω)(−2K)−5/2. In order for there to be invariant circles, we need the
average of f(ω) over ω to be zero,

(6.4)

∫ π

−π
f(ω) dω = 0,

which our kick function satisfies, being odd in ω. The KAM theorem for our problem takes
the form of [20], which says that for sufficiently small perturbations, most RICs will persist.

7. Discussion and conclusions. Using Picard’s method of successive approximations, we
derive a family of two-dimensional symplectic twist maps to approximate a particle’s motion
in the planar circular restricted three-body problem (PCR3BP) with Jacobi constant near 3.
The maps model a particle on a near-Keplerian orbit about a central body of unit mass,
where the spacecraft is perturbed by a smaller body of mass μ. The interaction of the particle
with the perturber is modeled as an impulsive kick at periapsis passage, encapsulated in a
kick function f . The maps are identified as an approximation of a Poincaré return map of
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the full equations of motion where the surface of section is taken at periapsis, mapping each
periapsis passage to the next in terms of ω, the azimuthal separation of the particle and small
perturbing body, and K, the Keplerian orbital energy of the particle about the central body.

The map captures well the dynamics of the full equations of motion; namely, the phase
space is densely covered by chains of stable resonant islands, in between which is a con-
nected chaotic zone. The chaotic zone, far from being structureless, contains lanes of fast
migration between orbits of different semimajor axes. The advantage of having an analytical
two-dimensional map over full numerical integration is that we can apply all the machinery
of the theory of transport in symplectic twist maps [24, 19, 9].

An interesting consequence of the approximation used to construct the map is that the
time-reversal symmetry of the original Hamiltonian system is broken, albeit slightly. The
origins of this symmetry breaking and development of a modified approximation process to
avoid it are currently under investigation.

Other authors have considered similar maps, so-called Keplerian maps, to study the long-
time evolution of nearly parabolic comets and comet-like objects [6, 36, 21]. By including the
dependence of the map on the Keplerian energy K, we have achieved one of the goals of [16],
which allows us to consider the map for orbits of moderate eccentricities and semimajor axes.

Our application is different from these papers. We apply our Keplerian map to the iden-
tification of transfer trajectories applicable to spacecraft transfers in a planet-moon system.
The use of subtle gravitational effects described by the map may be feasible for future missions
to explore the outer planet-moon systems where the timescale of orbits is measured in days
instead of years and low energy trajectories may be considered for intermoon transfers.

Physically, particles in the regime we study undergo multiple gravity assists of a different
kind than the hyperbolic flybys of, say, the Voyager missions. The gravity assists we study are
for particles on orbits with semimajor axes greater than the perturber’s and whose periapsis
passages occur close to, but beyond, the sphere of influence of the perturbing body (as con-
servatively estimated by the Hill sphere). The effect of gravity assists is largest for particles
whose passages occur slightly behind (resp., in front of) the perturbing body, resulting in a
larger (resp., smaller) semimajor axis. This makes the apoapsis distance grow (resp., shrink)
while keeping the periapsis distance relatively unchanged.

Dramatic orbital changes result from repeated gravity assists which are timed such that
changes accumulate steadily in one direction (e.g., steadily shrinking apoapsis distance). This
process can be understood in terms of phase space transport between resonance zones, i.e.,
resonant gravity assist. It is a three-body problem phenomenon not amenable to a patched-
conic approach. This work therefore fills a gap in the understanding of multiple gravity assist
mission design, which has been successful for Jacobi constants (Tisserand parameters) much
less than 3, where the subtle effects described here play little role [30].

This paper extends earlier work which considered the dynamical connection between res-
onances in the exterior realm and interior realm and their relationship to escape and capture
from a planetary or satellite neighborhood [14]. With straightforward modifications, the
method used here can be applied to orbits entirely in the interior realm, where the Poincaré
map is taken at apoapsis (where the perturbation due to the small mass is greatest) instead
of periapsis.

Future work will consider extension of the Keplerian map to include (i) out of plane
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motion, i.e., a four-dimensional symplectic map; (ii) multiple perturbers; (iii) eccentric orbits
for the perturbers; and (iv) control and uncertainty [29]. This will increase the tools available
to space mission designers and may shed light on the mechanism by which some minor bodies
and impact ejecta get handed off between planets and moons of the solar system [11, 32, 13].

Given the success of the current application to celestial mechanics, we intend to investigate
the general applicability of Picard’s method of successive iterates to approximations of a
Poincaré return map for perturbed Hamiltonian systems and other dynamical systems.
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